If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=226
We move all terms to the left:
a^2-(226)=0
a = 1; b = 0; c = -226;
Δ = b2-4ac
Δ = 02-4·1·(-226)
Δ = 904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{904}=\sqrt{4*226}=\sqrt{4}*\sqrt{226}=2\sqrt{226}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{226}}{2*1}=\frac{0-2\sqrt{226}}{2} =-\frac{2\sqrt{226}}{2} =-\sqrt{226} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{226}}{2*1}=\frac{0+2\sqrt{226}}{2} =\frac{2\sqrt{226}}{2} =\sqrt{226} $
| 0.3x+9=12 | | | | | | | | | | | | 0.25x-3=4;x= | | Y2+7y=0 | | 2(4y-3)=30 | | P+2q,q=9 | | 4x+3=19; | | (2x+x-5)(10x+5)=(5x+5)(3x-1) | | 10x+2.5=5x+27.5 | | (2w-3)(w-3)=55 | | n/3+9=18 | | 7m-2=14 | | x-13+x+4x-11=180 | | 63z−72=54z−36 | | (4+9i)(6−2i)=0 | | (3x+1)^2+(x+2)^2-(65)=0 | | 4/3(x-5)=-24 | | (x+5)+(2x-14)= | | -5(6+x)=-100 | | 10+4x-6=14x+11-10x | | r2-4r+4=7+91+ | | -172=8+5m | | 2x-8=-70 | | -5(6+x)=100 | | -16=14-3y | | 2√x-√(4x-11)=1 | | t+4=20 | | 6(n-1)=9(n-4) |